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Abstract
Background—The clinical utility is uncertain for many cancer genomic applications.
Comparative effectiveness research (CER) can provide evidence to clarify this uncertainty.

Objectives—To identify approaches to help stakeholders make evidence-based decisions, and to
describe potential challenges and opportunities using CER to produce evidence-based guidance.

Methods—We identified general CER approaches for genomic applications through literature
review, the authors’ experiences, and lessons learned from a recent, seven-site CER initiative in
cancer genomic medicine. Case studies illustrate the use of CER approaches.

Results—Evidence generation and synthesis approaches include comparative observational and
randomized trials, patient reported outcomes, decision modeling, and economic analysis. We
identified significant challenges to conducting CER in cancer genomics: the rapid pace of
innovation, the lack of regulation, the limited evidence for clinical utility, and the beliefs that
genomic tests could have personal utility without having clinical utility. Opportunities to capitalize
on CER methods in cancer genomics include improvements in the conduct of evidence synthesis,
stakeholder engagement, increasing the number of comparative studies, and developing
approaches to inform clinical guidelines and research prioritization.
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Conclusions—CER offers a variety of methodological approaches to address stakeholders’
needs. Innovative approaches are needed to ensure an effective translation of genomic discoveries.
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INTRODUCTION
Clinical validity—the association between genotype and clinical phenotype—is now
available for an increasing number of genomic applications. On the other hand clinical
utility— the improvement in patient outcomes and balance of risks and benefits—is largely
unknown for most cancer genomic applications. Implementing tests with uncertain clinical
utility potentially wastes health care resources, through variable or unnecessary use of those
tests. In the worst case, individuals are harmed when they or their health care provider acts
on the test results such that they receive ineffective, potentially harmful treatments, or cause
anxiety or discrimination. Further, clinical utility may be quite specific, as when limited to
subgroups with certain genotypes.1 To maximize the clinical relevance of existing and as-yet
unknown genomic applications, it is crucial to ensure that clinically valid tests also have
high clinical utility before they become widely used.

The clinical utility may be unclear for numerous reasons, including the relative lack of
regulatory requirements for test manufacturers to demonstrate clinical utility.2 Furthermore,
the research community has not aggressively prioritized either the translation of new
discoveries into practical use or the generation of evidence on these applications.3 The field
is also changing so quickly that evidence becomes rapidly outdated. In some cases, there
may be little incentive for private sector investment in molecular diagnostics because of a
lack of value-based reimbursement. Finally, existing paradigms for generating and
evaluating evidence may be too slow, too costly, too unwieldy, or too unrepresentative to
provide useful evidence to decision makers in a timely manner.4-7

Comparative effectiveness research (CER) is intended to create evidence for decision
making, and to find out “what works” in health care. Although many definitions of CER
have been proposed,8-12 we use the Institute of Medicine’s (IOM) definition:10 “CER is the
generation and synthesis of evidence that compares the benefits and harms of alternative
methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the
delivery of care. The purpose of CER is to assist consumers, clinicians, purchasers, and
policy makers to make informed decisions that will improve health care at both the
individual and population levels.” Some also use the term patient-centered outcomes
research to refer to this type of research, although this concept will ultimately carry its own
definition (pcori.org).

Concerns over the growing costs of health care13-15 have made the use of CER a practical
necessity, which have been enabled by $1.1 billion in funding from the American Recovery
and Reinvestment Act (ARRA), and the advent of the Patient-Centered Outcomes Research
Institute (PCORI) in the recent Patient Protection and Affordable Care Act (2010). Other
developments that make CER timely are a new genetic test registry (www.ncbi.nlm.nih.gov/
gtr/) at the NIH, recent congressional hearings stimulated by concerns over direct to
consumer genetic testing in July 2010, and possible changes at the FDA to consider genetic
tests as medical devices, which would require regulatory approval before marketing.

It is critical that all stakeholders (including consumers, insurers, policymakers, and
clinicians) possess tools to assess the clinical utility of genomic applications. We describe
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CER approaches to answer questions about cancer genomic applications, and the potential
challenges and opportunities associated with each. We provide case studies of genomic
applications to illustrate the types of questions decision makers are facing, and describe
potential CER study designs and methods that can be used to address them.

METHODS
We searched Pubmed for recent literature on CER, and searched the citations of these
articles to identify additional publications relevant to CER. We also considered additional
articles that were not identified through this search, but were known to the authors. We
selected the following methodology categories for consideration: evidence synthesis,
prospective comparative clinical trials, observational research, health economics and
decision modeling, and stakeholder engagement. We developed descriptions of these
approaches as applied to CER based on literature reviews and the authors’ experience. We
then identified a series of case studies of breast cancer genomic applications to clarify CER
questions and possible methods to address them. We selected breast cancer because of the
public health relevance of the disease, and because of the plethora of genomic applications
currently in clinical practice. We used the ACCE framework (Analytic validity, Clinical
validity, Clinical utility, and Ethical, legal and social implications) 16 as a starting point to
identify and organize the information we would abstract on the case studies. Finally, we
identified particular challenges for using these CER approaches to conduct genome-based
research.

RESULTS
Our results are presented in three sections: 1) identification of the key questions for CER
applications in cancer genomics, 2) illustration of the key questions using examples from
breast cancer genomic applications, and 3) general methodological approaches to addressing
the key questions.

Key Questions
We framed our analysis using the following key questions, which are drawn from the ACCE
framework16 and other models.17

Is there a significant association between the results of the genomic application and clinical
phenotype? (clinical validity)

Does the genomic application provide correct information? (analytic validity)

Does the genomic application provide clinically significant information? (clinical utility)

Does the genomic application lead to improve patient outcomes compared to the alternative?
(comparison or added clinical value)

Illustration of Key Questions using Cancer Genomic Applications as Examples
Genomic applications can span the entire range of disease, from risk identification to di-
agnosis and patient management. Table 1 shows examples of both conventional and
genomic applications in the context of breast cancer for each test category. We provide
summary tables of example key questions for breast cancer genomic applications that
address risk assessment [Table 2] and treatment decisions [Table 3].

Clinical validity is the association between the predictor (e.g., genotype, profile, or family
history status) and clinical phenotype. Predictors are identified by investigating targeted
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path-ways, candidate gene analysis, or through agnostic genome-wide study designs.
Methodological problems from multiple testing, heterogeneity, the “winner’s curse” (the
likelihood that the first report of a significant test will have a larger effect size than later
replication studies), small sample size, and other concerns make interpretation
challenging.18-20 Further, the attributable risk may be small because of low frequency or low
penetrance, or the variant may only be linked to the functional variant. For example, initial
studies reported an association between CYP2D6 variants and the risk of disease recurrence
in women taking tamoxifen [Table 3].21 A systematic evidence review, however, found
inconsistent evidence.22 Preliminary results from recent retrospective analyses of large
randomized controlled trials (RCTs) including about 5,000 women23,24 found no association
between CYP2D6 variants and breast cancer recurrence.

Analytic validity refers to characteristics of the test including reproducibility (i.e., will the
same test performed on the same sample produce the same result?), the lower limit of
detection (smallest quantity of the target that can be reliably detected), and analytic
specificity (ability to measure the target and only the target). A proficiency testing program
(exchange of quality control material for analysis and comparison across laboratories) may
be the best approach to address this concern. For example, when HER2 testing [Table 3] was
first used in breast cancer clinical trials, it is estimated that up to 20% of test results may
have been incorrect. Laboratories with lower volume testing were the most likely to report
incorrect findings.25,26 A proficiency testing program has since been implemented for
HER2.27

Clinical utility has to do with whether the information provided by the genomic application
is actionable, and evaluating the balance between risks and benefits of available actions.
BRCA1/2 testing [Table 2] is one example. Mutation carriers are at increased risk of
developing breast and ovarian cancer and can receive more effective breast cancer screening
by choice of screening modality or interval, can undergo surgeries to reduce risk by
85-100%, or can select chemoprevention. High-risk women in families with known
mutations who undergo testing and are found not to carry deleterious BRCA1/2 mutations
can receive significant psychosocial benefit and avoid these interventions. On the other
hand, the clinical utility of gene expression profiles is less clear.28 A key area of uncertainty
is how women and their physicians will make treatment decisions based on test results in the
intermediate risk category. Two prospective RCTs —TailoRx and RxPonder—are underway
to evaluate how risk profile scores affect patient management, treatment decisions and
subsequent outcomes.29,30

Added Clinical value 17 asks whether the application provides superior clinical, patient, or
economic outcomes than the alternative, which could be another intervention or usual care.
A critical factor is how to define and measure ‘better’, which could include measures of
predictive accuracy, quality of life, survival, or other outcomes, including testing costs,
acceptability, or feasibility. Recently, a genetic risk prediction model for breast cancer was
published including 10 well-validated single nucleotide polymorphisms (SNPs) [Table 2].31

The predictive power of this genetic model is only slightly better (about 4%) than the widely
used Gail model,32 which uses non-genetic factors to predict risk. Because both models
explain about 60% of risk, and because the Gail model can be used without the expense of
genetic testing, the added clinical value of the risk prediction model based on SNP profiles
is low.

General Methods for Comparative Effectiveness Research
The key questions and methodological challenges described above, coupled with the need
for CER to inform a diverse group of stakeholders, will require a range of innovative
strategies, including both evidence synthesis and evidence generation [Table 4].
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Synthesis of existing evidence—Evidence synthesis begins with identifying topics
through processes such as horizon scanning,33 which searches published literature and grey
literature databases (e.g., meeting abstracts, commercial websites, newsletters, or business
news) for emerging genomic applications. Horizon scanning may also examine existing
curated databases of published literature such as the HuGE Navigator, the GAPP Knowledge
Base (GAPPKB), or the Pharmacogenomics Knowledge Base (PharmGKB). Grey literature
sources identify emerging genomic applications because of the lag in reporting on these
topics in peer-reviewed published literature; these may be supplemented by a query process
from users as an early indicator of burgeoning clinical interest. Once new topics are
identified, rapid topic briefs, or short reviews, are used to assess the feasibility of a full
systematic review.

Full systematic reviews are often identified through a public nomination process and then
commissioned through an existing body such as the U.S. Preventive Services Task Force,
EGAPP Working Group, or the AHRQ Effective Healthcare (EHC) Program. The scope of
the review is defined by the analytic framework and key questions, and the reviewers
conduct a broad but systematic search to identify evidence. They develop inclusion and
validity criteria for the evidence, and abstract needed data, which is then synthesized and
summarized in a narrative. Quantitative approaches such as meta-analysis may provide
summary estimates of critical measures across studies. While full systematic reviews are
comprehensive, they may not be timely, which is a critical issue in summarizing evidence in
genomics.

Generation of new evidence
Clinical trials: Explanatory RCTs are used to evaluate the efficacy of a medical
intervention. They are often viewed as the ideal approach to protect against bias. However,
this study design also has limitations.34,35 Explanatory RCTs are typically restricted to
selected patients, but real-world populations can differ markedly in age, race, comorbid
conditions, concomitant medication use, and environmental factors. The generally small
sample size of RCTs may under-represent some patient groups, a particular concern when
evaluating genomic-based subgroups. Randomization requires a prospective design, and so
RCTs tend to focus on questions of short-term efficacy and safety using intermediate
(surrogate) endpoints. Finally, because RCT protocols are often far removed from routine
practice, they may not accurately predict real-world effectiveness.

Innovative strategies in the design of clinical trials seek to overcome these limitations.
Pragmatic clinical trials 36,37 address the issue of relevance by assessing the effectiveness of
the intervention in routine practice by using wide patient inclusion criteria, allowing
variation in the treatment protocol, and assessing outcomes relevant to everyday life.
However, these studies typically require much larger sample sizes to compensate for
heterogeneity in the patient population and the treatment protocol, and longer time frames to
assess patient-relevant outcomes.

To fund and implement studies with larger sample sizes, collaborations between researchers,
health care systems, and payers will be critical. A policy framework for conducting such
collaborations is coverage with evidence development (CED). CED is a conditional
reimbursement decision by a payer, with an explicit linkage between payment and data
collection to reduce uncertainty about the intervention.38,39 The Centers for Medicare and
Medicaid Services (CMS) recently issued a CED policy for warfarin pharmacogenomic
testing, in which CMS will pay for testing if the patient is enrolled in a RCT designed to
measure bleeding events.40
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Cluster randomized trials are another alternative experimental design in which units such as
communities, medical clinics or hospitals, or families are randomized to intervention arms
rather than individuals. This design is often used when the intervention is aimed at changing
the behavior of the group or the behavior of a provider, or changing the organization of
services. This design can also be used to reduce contamination (e.g., ‘spill-over’ effects of a
mass educational campaign), or to improve the feasibility of a study. Cluster randomized
trials require more sophisticated analytic approaches and larger sample sizes because of lack
of independence among individual observations.41,42 However, this study design may still
be cost-efficient.43 Cluster randomized trials have been used to assess the impact of decision
support tools implemented at the provider level, particularly involving genetic risk
assessment based on family history.44-46

Bayesian or adaptive trial designs can accelerate the pace of evidence generation by in-
corporating information from prior cases to alter the study midway, based on interim results.
An adaptive design incorporates genomic profiles into the trial design by changing the
patient randomization process to treatment arms as the trial progresses based on the
accumulated data for each profile.47 Despite potential advantages, these trials have not
gained widespread acceptance because of nonstandard methods and resistance among FDA
regulators.

One example of an adaptive design is the I-SPY 2 project.48 This is a phase II RCT in the
neoadjuvant setting for women with locally advanced breast cancer. Patients are randomized
to treatment arms based on their biomarker profile. Initially, patients with a given biomarker
profile have an equal chance of being randomized to each treatment arm. Over time, the
randomization ratio (i.e., the vector of probabilities that a patient will be randomized to each
treatment arm) for each biomarker profile is adjusted depending on the experience of
previously randomized patients with that profile. Thus, future patients are more likely to be
randomized to treatment arms in which patients with similar biomarker profiles achieved a
better response.

Observational Studies: Observational study designs are a valuable and complementary
approach to RCTs.34,35,49 These designs are especially useful when it would be unethical or
infeasible to conduct an RCT. For example, Habel and colleagues (2006)50 conducted a
retrospective case-control study to evaluate the association between long-term outcomes (the
risk of breast cancer death) and Oncoty-peDX Recurrence Score. Previous studies based on
RCTs could not evaluate this outcome and used shorter-term outcomes instead including
rates of distant recurrence as the primary measures.51,52 The primary limitation with
observational study designs is the possibility of confounding bias due to unexplained
differences between exposure groups, which are not controlled for through randomization.
One option is to use risk adjustment approaches, such as propensity scores or instrumental
variables. However, unlike randomization, these approaches cannot control for unmeasured
or imperfectly measured covariates, so residual confounding may still be present.
Observational designs are less subject to bias when there is no relationship between
treatment assignment and treatment response and can contribute important information
about un-anticipated, real-world impacts that complements RCTs.

Use of large, administrative health care databases to access routinely collected data may
offer significant advantages for an observational design. The large population size enables
the study of infrequent events. Also, such databases are representative of routine care,
making it possible to study real-world effectiveness and utilization patterns. The data are
available at relatively low cost without long delays compared with data gathering for a new
prospectively recruited study. Electronic data from integrated health care systems with a
defined population and electronic medical records (EMRs) allow broad consideration of the
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patient’s health status. Over time, EMRs and associated databases will make it feasible to
consider long-term outcomes. One limitation is a lack of clinically derived genomic
information or the ability to easily access it.53 However, many systems now have
biorepositories linked to EMRs, which can facilitate retrospective study designs.

Decision modeling and health economics: Evidence-based bodies have generally relied on
RCTs to inform their guideline development when weighing relative benefits and harms.
Decision modeling provides a framework to formally incorporate indirect and direct
evidence from various sources, to evaluate likely outcomes, and to quantify uncertainty. The
advantages of this approach are a structured, transparent framework for assessing the
available evidence, and, critically, for quantifying the uncertainty of evidence and its
potential impact on patient outcomes. Challenges include timeliness of implementation,
development of models acceptable to stakeholders, problems with assumptions and model
transparency, and the development of formal guidelines or recommendations based on
modeling analyses. Recent work indicates that stakeholders such as clinicians, health care
payers, and guidelines groups are open to using such approaches in genomics if the process
is trans-parent and there is not an overreliance on the model results to drive
recommendations.54

Another CER approach is value-of-research (VOR) analysis, also called value-of-
information (VOI), which is used to make decisions about selecting technologies for
additional research, and for designing those trials optimally. The concept behind VOR is that
additional research reduces our uncertainty about which intervention to use in clinical
practice.55 Reducing uncertainty is valuable because it reduces the chances that the less
optimal strategy is selected, and studies that provide ‘negative’ results are still valuable.
Impacts on patients’ morbidity and mortality are assessed, as well as health care costs. These
approaches are just beginning to be applied to research prioritization decisions in health
care, and must be shown to be feasible as well as useful before widespread implementation.
The VOR paradigm may be particularly useful in genomics because the pace of innovation
leads to the need to prioritize investment in expensive comparative studies.56

Cost-effectiveness analysis (CEA) is the standard approach to formally assess the
incremental value of health care technologies.57 These analyses can incorporate a variety of
outcomes including clinical events, life-expectancy, quality-adjusted life expectancy, and
health care costs. Applying CEA to genomics can be challenging. First, the general lack of
comparative effectiveness data makes evaluation of comparative value problematic, and
uncertainty must be carefully assessed. Second, the value patients and clinicians place on
knowing genetic information (the ‘value of knowing’) is difficult to measure and to
incorporate in policy decisions.58,59 Contingent valuation (willingness-to-pay) approaches
have been used;60 more recently, discrete choice experiments to assess patient preferences
offer significant promise.61

Stakeholder engagement: Given CER’s explicit purpose to produce useful information for
decision making, there has been increasing recognition of the importance of including
stakeholders such as patients, clinicians, payers, and policymakers in CER activities. The
IOM recommended specifically that this work “should fully involve consumers, patients,
and caregivers in …strategic planning, priority setting, research proposal development, peer
review, and dissemination”.10 The rationale is that such involvement will lead to a focus on
questions of most relevance to end-users.62 Stakeholder involvement should increase the
chances that study designs will reflect the specific questions of decision makers, and the
greater relevance of the research questions will also facilitate use of results in decision
making. Recent work by Deverka and colleagues is one example of an approach to involve
stakeholders in assessing the current state of evidence.
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While the need for stakeholder engagement is widely recognized, the published literature on
this topic is limited, and there are few formal evaluations of these methods.63 Some
qualitative synthesis has identified several recurring themes, including the importance of
developing trust and shared understanding through sustained interaction and devoting
adequate time and resources to training and preparation.64 The need for valid methods for
engaging patients, consumers and clinicians has been identified as a critical CER methods
research priority.65

DISCUSSION
Developing sufficient evidence on the clinical utility of cancer genomic applications is
complex. The rapid pace of innovation in genomics means that studies must be extremely
efficient if the evidence is to remain timely and relevant. This can limit the potential
endpoints to short-term outcomes, or require retrospective designs to enable sufficient time
for events to accumulate. There is a general lack of evidence for clinical utility, but there is
also a need to clarify the meaning of clinical utility. For example, the concept of personal
utility, or the value of knowing the information, is clearly relevant for some decision makers
and settings (e.g., direct-to-consumer marketing), but may not be relevant in a clinical
context.60 The metrics for measuring personal utility are not well established.58,66 It is also
essential to identify the relevant comparator for CER, and to present data to enable
appropriate comparisons.

To resolve questions on the clinical utility of genomic applications, a more comprehensive
approach is needed. Very few genomic applications have sufficient evidence for widespread
recommendation and use in clinical care. Research is needed that considers more outcome
measures, and in settings that are relevant to more real-world clinical decisions. All
stakeholders have a role in facilitating the generation of evidence. For example, health
systems are needed to provide data and facilitate pragmatic trials, providers are needed to
use genomic tests in the context of evidence generation, and test developers are needed to
make tests available for collaborative study. A clear approach to developing priorities for
CER research is also needed to ensure that limited resources are used to resolve the most
compelling questions. Such approaches should engage stakeholders to ensure the study of
pressing topics in ‘real-world’ environments and should proof approaches for rapid evidence
synthesis and quantitatively assess the value of prioritized research, considering the health
and well-being of patients and the decision-making needs of other stakeholders.

Second, it may be necessary to reform the evidentiary framework to define evidence
standards for clinical utility.6 This task that will require a dialogue and interaction between
evidence appraisers and end users to develop consensus and to define acceptable alternatives
to the current hierarchies of evidence. That is, to recognize that a RCT is not desirable or
feasible in every circumstance, and to decide when (not if) to use an observational study
design and the extent to which evidence of underlying biological mechanisms contribute to
the evidentiary frame-work.67 Beyond study designs, an evidentiary framework needs to
cogently articulate the minimal evidence necessary before clinical application is warranted,
taking into consideration issues around the type of genomic application and its clinical
context.

Third, strategies that are rapid, timely, and efficient are needed given the fast pace of
discovery in genomic-based approaches. Existing methods are limited,68 and innovative
methods are needed to make CER successful and relevant to decision making.69,70 New
strategies will involve transformation of the research infrastructure to “learning systems”
that allow continual addition to the evidence base. This approach will achieve greater
efficiency through efforts such as establishing bio-repositories or registries, linking
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electronic medical record data or administrative databases to genomic information and
creating quality-assured clinical data repositories, or improving standardized coding
schemes for genomic applications.

Finally, any reforms of the evidentiary framework should uphold rigorous standards on the
statistical validity of the research.71 Although some study designs have a risk of greater
uncertainty, we can make strategic choices about when such increased uncertainty is
acceptable. We should improve the integrity and conduct of all study designs by using
guidelines such as those provided in Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE), CONsolidated Standards of Reporting Trials Statement
(CONSORT), STrengthening the REporting of Genetic Associations (STREGA), and
Genetic RIsk Prediction Studies (GRIPS). Also, we can describe how threats to validity are
assessed in grading evidence, or require pre-registry of the analysis plan for observational
studies, as is currently done for RCTs, to reduce biases (including selective outcome
reporting) or errors, such as from multiple testing.

Conclusion
The risk of maintaining the status quo in cancer genomic medicine is high. Informed
decision making through the development and application of comparative effectiveness
research could accelerate the implementation of valuable genomic applications, while
avoiding harmful applications that can persist in clinical care, leading to waste or patient
harm.
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Table 1

Test Categories and Relationship to Breast Cancer Disease Status

Disease Status Test Category Genomic Test Example Conventional Example

Pre-Disease Predictive
Risk Assessment

BRCA1/2
Family History
SNP Genotypes

Age, Behavioral factors (e.g., nulliparity)

Asymptomatic Disease Screening None Mammography

Disease Diagnosis Differential
Diagnosis None Tumor Histopathology

Prognosis HER2 genotype
Gene Expression Profile Estrogen, progesterone receptor

Disease Management & Treatment Pharmacogenomic HER2 genotype
CYP2D6 genotype Estrogen, progesterone receptor

Monitoring None Tumor markers (Cancer Antigen CA 15-3, CA
27.29, Carcinoembryonic Antigen)
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Table 2

Risk assessment genomic applications: Summary of current evidence for breast cancer case studies

Comparative Effectiveness Research (CER)

Test
Application

Analytic Validity
QUESTION: How well

can we measure
[test application]?

Clinical Validity
QUESTION: Is [test

application]
associated with the risk of

developing
breast cancer (BC)?

Clinical Utility
QUESTION: Are there

actions based on
[test application] to prevent

BC? What are
the benefits and harms?

Added Clinical Value
QUESTION: Is use of [test

application]
better than the alternative for

predicting BC
risk?

Family
history (FHx)

• RESULT: Currently not
well docu

mented or collected in
either primary

care or specialty practice.
Only a mi

nority of abstracted charts
find a do

cumented FHx.
• APPROACH:

Observational studies;
chart review

• LIMITATIONS: Small
family size,

predominance of males,
adoption,

lack of information about
relative,

misattributed paternity,
skewed segregation

and incomplete
penetrance

limit utility of the tool.

• RESULT: There is a strong
but not

universal demonstrated
association

between FHx and
development of

BC. A substantial proportion
of confirmed

BRCA mutation carriers lack
a FHx in 1st- and 2nd-degree

relatives.
• APPROACH: association

lineage
studies; observational studies.

• LIMITATIONS: Only
about 20%

of U.S. women who develop
breast

cancer have a positive FHx.
FHx is

not always defined the same
way.

• RESULT: Risk reduction
surgery

(prophylactic mastectomy
and oophorectomy)

and chemoprevention for
patients

at high risk because of FHx.
Women

with “only” positive FHx
have had

these prophylactic
procedures.

• APPROACH:
observational case control

or historical control studies.
• LIMITATIONS: Limited

evidence of
the positive impact of these

actions on
patient’s quality of life or

other important
outcomes.

• COMPARATOR: Risk
assessment tools

using clinical characteristics
(e.g., breast

density) or SNP panels.
• RESULT: FHx is

consistently the
strongest predictor of BC risk.

None of
the “expanded” risk models

have ever excluded
FHx from the final models.

• APPROACH:
Observational studies

usually using r2 or sensitivity
and specificity

as measures of discrimination.
• LIMITATIONS: No

widespread comparisons
made with GWAS.

SNP
genotypes

• RESULT: Analytic
validity is high.

Genotypes can be reliably
measured

through array-based
genotyping in

GWAS.
• APPROACH: array-

based genotyp
ing

• LIMITATIONS:
Common variants

have a much higher
coverage than

rarer ones; error rates are
higher for

SNPs with a low minor
allele frequency.

• RESULT: 18 SNPs are
significantly

associated with BC and are
replicated

in separate studies.
• APPROACH: GWAS

• LIMITATIONS: Although
some of

the initial prediction results
using

retrospective analyses appear
promising,

the work is not able to answer
fundamental questions such

as
whether a given set of SNPs

can explain
a large proportion of familial
risk. No prospective cohort

study

• RESULT: unknown
• APPROACH: none

• LIMITATIONS: No
clinical tool exists

and therefore no studies on
the clinical

utility of these tests in better
managing

BC risk in patients, nor of
unintended

consequences

• COMPARATOR: risk
assessment with

out SNP genotypes
• RESULT: SNP genotypes

modestly
improve the performance of

risk models.
• APPROACH: area under

the Receiver
Operator Characteristics

curve
• LIMITATIONS: The

identified SNPs
have small and unvalidated

incremental
value compared to existing

models

BrCA1/2
genotype

• RESULT: Analytic
validity is high.

Myriad Genetics reported
analytic

sensitivity and analytic
specificity

>99%.
• APPROACH:

observational studies
• LIMITATIONS: Some

occult mutations
are not detected by
current methods,

and there undoubtedly
remain

undiscovered mutations.

• RESULT: Clinical validity
is high

for deleterious mutations, and
negative

results for known familial
mutations.

For the first family member
to

be tested, a “no mutation
identified”

result is indeterminate, since
not all

BRCA mutations can be
identified.

13% of tests result in variants
of

• RESULT: Intensive
screening of women

with familial risk improved
detection but

considerable interval
cancers.

• Chemoprevention with
tamoxifen has

benefit for high risk women,
and specifically

for BRCA carriers.
• Mastectomy conferred BC

risk reduction
ranging from 85-100%.

Oophorectomy
conferred ovarian cancer risk

reduction

• COMPARATOR: risk
assessment tools

without BRCA1/2 genotype
• RESULT: BRCA1/2

genotyping is advantageous
to identify high risk women
in some categories identified

by personal
and family history of breast or

ovarian
cancer, age at diagnosis, and

Ashkenazi
jewish ancestry. Testing is

unlikely to be
cost effective in categories of

women
with low a priori risk.
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Comparative Effectiveness Research (CER)

“uncertain clinical
significance”.

• APPROACH:
observational studies

• LIMITATIONS: Women
who

carry a variant of uncertain
clinical

significance are managed
according

to the personal and family
history.

ranging from 85-100%, and
53-68% for

BC when done before
menopause.

• high-risk women may use
more effective

BC screening modality
• APPROACH:

observational studies
• LIMITATIONS: Few

screening or
prevention recommendations

for ovarian
cancer among women with

BRCA mutations
exist.

• APPROACH: observational
studies,

modeling
• LIMITATIONS: The

majority of BC
cases are not explained by

BRCA1/2 mu
tations
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Table 3

Pharmacogenomic applications: Summary of current evidence for breast cancer case studies

Comparative Effectiveness Research (CER)

Test
Application

Analytic Validity
QUESTION: How well

can we
measure [test application]?

Clinical Validity
QUESTION: Is [test

application] associated
with the treatment

response?

Clinical Utility
QUESTION: What are the

benefits and
harms of [test application] for

treatment
decisions?

Added Clinical Value
QUESTION: Is use of [test

application]
better than the alternative?

HER2
genotype and
trastuzumab

treatment
response

• RESULT: Test
characteristics

depend on whether IHC or
FISH

platform is used, test
volume of the

laboratory, and testing
strategy

(e.g., FISH or IHC test
first)

• APPROACH:
observational stu

dies
• LIMITATIONS: HER2

status may
change when comparing

the prima
rytumor to metastases.

• RESULT: HER2 status is
associated

with survival following
treatment

with trastuzumab in early
stage and

metastatic disease, and with
response

to anthracyclines.
• APPROACH:

randomized clinical
trials

• LIMITATIONS: some
studies on

anthracyclines had small
samples sizes

• HARMS: potential for
trastuzumab to

be effective for some (small %)
patients

who are HER2 negative
• BENEFITS: Avoiding

cardiotoxic
side effects in patients who will

not
respond to trastuzumab.

• Avoiding use of an expensive
treatment

for patients who will not
benefit

from treatment

• COMPARATOR:
herceptin

treatment decisions in the
absence

of knowledge of HER2
status

• RESULT: none.
• APPROACH: none.

• LIMITATIONS: none.

CYP2D6
genotype and

tamoxifen
treatment
response

• RESULT: High for SNP
detection

• APPROACH:
observational studies

• LIMITATIONS: none.

• RESULT: Not well
established;

conflicting results
• APPROACH:

retrospective analysis
of prospective clinical trials

and retrospective
cohort studies

• LIMITATIONS: small to
medium

sized studies; conflicting

• HARMS: unknown.
• BENEFITS: Alternative

treatments
for women with poor

metabolizer ge
notypes(aromatase inhibitors)
• Tamoxifen could become the

preferred
effective and inexpensive

therapy for
many women without poor

metabolizer
genotypes

• COMPARATOR:
treatment

decisions in the absence of
knowledge

of CYP2D6 genotype
• RESULT: none.

• APPROACH: none.
• LIMITATIONS: Direct

assessment
of clinical utility with RCT

expensive
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Table 4

Opportunities in Comparative Effectiveness Research

Type of Study Methods Opportunities

Evidence Synthesis Horizon Scanning
Rapid/state of the science reviews
Identification and prioritization of research gaps
Systematic reviews
Health Technology Assessment

Randomized Clinical Trials (RCTs) Explanatory RCTs
Bayesian and adaptive clinical trials
Cluster randomized trials
Pragmatic clinical trials
Study of subpopulations/subgroup analyses
Incorporation of genetic questions/information into trial design
Proxy outcome measures
Coverage with evidence development

Observational Studies Case-Control design
Retrospective and Prospective Cohort design
Quasi-experimental design
Administrative databases and electronic medical records (EMRs)
Retrospective analysis of biospecimens from RCTs
Selection bias: instrumental variables, propensity scores
Confounding by indication: restriction

Decision modeling/
economic analysis

Value of information analysis/scenario modeling
Risk-benefit modeling to facilitate evaluation of indirect evidence
Stakeholder engagement and knowledge brokering (GAPPNet)
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